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1. Introduction

One may calculate the interface force, F, upon a projectile as the target’s averaged flow
stress applied over the directional component of the projectile’s wetted area, to obtain

F/Ap_wet = kTρTU2 + RT , (1)

where Ap_wet is the wetted area of the projectile, projected onto a plane perpendicular to
the velocity vector, kT is the target-flow "shape factor," ρT is the target density, U is the
penetration velocity, and RT is the so-called target resistance, an integrated amalgam of
the deviatoric stress field developed in the target. For ductile eroding targets, many
analyses have suggested (and experiments have supported) that the target resistance can
be treated as a constant (i.e., independent of penetration velocity) whose magnitude is in
the range of four to six times the uniaxial flow stress of the material.

When the projectile erodes, the eroding nose of the projectile assumes a roughly
hemispherical shape which is fully wetted by the erosion products. In this circumstance,
one may reasonably assume that Ap_wet approaches the cross-sectional area of the
projectile, AP, and that kT approaches the value of 0.5 associated with the Bernoulli
stagnation pressure. The result is that the decelerative stress averaged over the cross
section is given by

σ̄ = F/AP = 1/2ρTU2 + RT . (2)

Such a result is seen, for example, as part of the stress balance in the so-called
extended-Bernoulli equation used by Tate (1) and others.

If, however, the projectile remains rigid during the penetration event, then a different set
of simplifications apply. While it is deduced that the penetration velocity, U, must equal
the projectile velocity, V , no simplifications are obvious regarding the shape factor and
wetted area, kT and Ap_wet, respectively. Thus, the cross-section-averaged decelerative
stress is

σ̄ = F/AP = (kTρTV 2 + RT ) ·Ap_wet/AP . (3)

When this equation is approximated by taking Ap_wet as AP, with constant values of kT

and RT , and when it is used as the decelerative stress acting upon the cross section of a
rigid projectile, the form the equation takes is known as the Poncelet form.
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The Poncelet form looks like
−MV̇ = BV 2 + C (4)

and is traditionally solved by expressing the acceleration V̇ as V(dV/dx), where x is the
coordinate of penetration. Given a striking velocity, V0, the solution yields the
penetration depth as a function of the current velocity:

x(V) =
M

2B
log
(

C + BV 2
0

C + BV 2

)
. (5)

The final penetration depth is obtained when the instantaneous velocity, V drops to zero,
to yield

P(V0) =
M

2B
log
(

1 +
B

C
V 2

0

)
. (6)

Segletes and Walters (2) also offered a time-dependent explicit solution to the Poncelet
form (i.e., in terms of V(t) and x(t), where t is the time variable) when they solved for
the residual rigid-body penetration phase of an otherwise eroding-body event. The form
of their solution, using the nomenclature of equation 4, is

V(t) =

√
C

B
tan

[√
BC

M
(tf − t)

]
(7)

and

x(t) =
M

B

{
log cos

[√
BC

M
(tf − t)

]
− log cos

(√
BC

M
tf

)}
, (8)

where the event duration, tf, is given by

tf =
M√
BC

tan−1

(
V0

√
B

C

)
. (9)

It can be shown, through trigonometric substitution, that x for the case of V = 0 in
equation 5 is identical to x for the case of t = tf in equation 8. This is as it should be since
the total penetration should not depend on whether V was integrated over t or x.

2



2. Theory

Presently, we wish to model the penetration of gelatin by rigid spheres. To do so, we will
re-examine the data of Sturdivan (3) and Minisi (4). Sturdivan modeled the gelatin by
considering the effects of inertial and viscous deceleration using a generalization of
Resal’s law. Gelatin strength was not part of Sturdivan’s model. As a result, the latter
stages of penetration tended to be overestimated since viscous deceleration loses its
potency at diminished velocity vis-à-vis strength-based deceleration. In the current
approach, a rate-based strength is introduced, allowing one to bridge the gap between
pure viscous and pure strength-based velocity retardation models.

In hopes of simplifying equation 3 to a useful, solvable form that is nonetheless more
general than the Poncelet form, we will make several assumptions a priori and later
determine their appropriateness. First, we will assume kT and Ap_wet/AP to be constant.
We will generalize the target resistance RT (i.e., the flow stress) to be a material property
that is not constant as in the Poncelet form but instead dependent upon a power of the
characteristic strain rate, ε̇.

Therefore, from equation 3, we have

F/AP = 1/2ρT · [bV 2 + V 2
c(ε̇/ε̇c)

α] , (10)

where b, α, Vc, and ε̇c are constants (b and α are dimensionless) that have been
introduced in a manner compatible with our assumptions. A characteristic strain rate
may be conveniently defined as

ε̇ = 2V/D , (11)

where D is the projectile diameter (D/2 is the characteristic length of shearing strain).
With the form of equation 10 and in light of equation 11, the instantaneous drag
coefficient may be expressed as

CD =
F

1/2ρTV 2AP

= b +

(
Dc

D

)α(
Vc

V

)2−α

. (12)

Note that since the penetrator remains rigid, the sphere diameter of equation 12 is a
constant parameter for any given test, varying only when the projectile is changed for
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different test cases. However, the dependence of CD on instantaneous velocity V means
that for a target material with strength, the drag coefficient will change (i.e., increase for
typical α) during the course of deceleration.

For an eroding configuration into a traditional Tate-like ductile target material, the value
of b would equal unity and the exponent α would be zero. In contrast, for a rigid
penetrator in a constant-drag fluid (e.g., for a laminar Newtonain fluid at moderate
Reynolds number, 2000 < R < 250, 000), the value of b would equal the fixed drag
coefficent (approximately 0.4 for a sphere in Newtonian fluid, see figure 1) and the
values of Vc would equal zero.

Figure 1. Drag coefficients for spheres traversing Newtonian
fluid as a function of Reynolds number (5).

For the special case of α = 1 in which the flow stress of the target is directly proportional
to the strain rate (i.e., when the material behaves as a Newtonian fluid), the drag form of
equation 12 for vanishing V will mimic the low-Reynolds-number Stoke’s formula for
drag upon a sphere. Thus, we see that the form we have chosen in equation 10, merely
through the selection of parameters α and b, can be made to emulate material behavior
somewhere between an ideal ductile solid (α = 0 and b = 1) and a laminar Newtonian
fluid (very approximately, α = 1 and b = CD(steady)).

When the retardation force is formulated according to equation 10, the resulting
equation of motion becomes

−(M/AP) · V̇ = 1/2 ρT · [bV 2 + V 2
c (ε̇/ε̇c)

α] . (13)
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Substituting for the geometric terms as well as the strain rate, ε̇, allows one to obtain the
formulation in terms of V and D:

−

(
ρP

ρT

)
2LeffV̇ = bV 2 +

(
Dc

D

)α

V 2−α
c Vα , (14)

where the effective length, Leff, can be characterized as the projectile volume divided by
the projectile’s presented area when projected onto a plane perpendicular to the velocity
vector. For the present case of a spherical projectile, the term 2Leff simply becomes
(4/3)D.

Having formulated a flow-retardation form for rigid spheres (equation 14) that is more
general than the Poncelet form (equation 4) we must now derive the solution to it. Using
the standard approach of decomposing V̇ as V dV/dx, equation 14 can be reformulated
into:

−V 1−αdV

bV 2−α + (Dc/D)
α

V 2−α
c

=
3
4

(
ρT

ρP

)
dx

D
. (15)

Such a form is directly integrable over the velocity limits V0 to V as

3
4

(
ρT

ρP

)
x

D
=

1
b(2 − α)

log

[
1 + b (D/Dc)

α
(V0/Vc)

2−α

1 + b (D/Dc)
α

(V/Vc)
2−α

]
. (16)

For the case where penetration ceases at V = 0, one obtains the total penetration, P, as

3
4

(
ρT

ρP

)
P

D
=

1
b(2 − α)

log
[
1 + b (D/Dc)

α
(V0/Vc)

2−α
]

. (17)

Unfortunately, no time-based solution, comparable to that given in equations 7–9 has
been obtained for this more general case. However, for certain select values of α,
additional progress may be had, as will be subsequently explored. Regardless,
equation 17 provides a solution which can be compared against aggregated penetration
vs. striking-velocity data, while equation 16 can be used to examine the deceleration
characteristics of individual tests, for which P vs. V data have been extracted. With a
target-material description that is a function of strain rate, however, normalized
penetration, P/D, is no longer independent of projectile diameter.

Fitting equation 17 would appear to require the specification of four fitting parameters,
b, α, Dc, and Vc. However, the terms involving the parameters Vc and Dc can, in fact, be
grouped together as V 2−α

c Dα
c and therefore represent a single independent parameter. In
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practice, Dc is arbitrarily taken as the sphere diameter for which some test data is
available, and Vc is fit accordingly.

For certain select values of α, additional progress may be had in obtaining analytical
solutions. The fortuitous fitting of the α parameter to a value of 1/2 will provide such an
opportunity. In this case, one may begin with equation 14, using the substitution of
z2 = V , in order to arrive at the form

−
3ρTdt

8ρPD
=

dz

bz3 + a
, (18)

where

a =

(
Dc

D

)1/2

V 3/2
c . (19)

While a contains the diameter D, which can vary from test to test, the integration
required of equation 18 is not adversely affected since a remains constant for any given
test case. This form is directly integrable (6) and yields, upon resubstitution for V ,

3ρT

8ρPD
t =

k

3a

[
1
2

log
(k +

√
V)3

a + bV 3/2 +
√

3 tan−1 2
√

V − k

k
√

3

]V0

V

, (20)

where

k = 3

√
a

b
. (21)

Once t(V) is known through equation 20 and given that x(V) is known through
equation 16, one can construct x vs. t as an implicit function of V for this very special
case of α = 1/2.

3. Results

The presentation of data vis-à-vis the model is complicated by the fact that the available
data cover a range of sphere diameters and not all of the collected data span the
complete test. For example, the tests of Sturdivan (3) terminated data collection while
there was still significant residual velocity in the penetrator.

It should also be noted that the reporting of penetration into gelatin is further
complicated by the presence of a large elastic recoil in the target. Because of this recoil,
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the final penetration can be somewhat less than the point of maximum penetration, which
occurs prior to the recoil. Arguments can be made for the use of either metric as the
more appropriate measure of penetration. However, because the current model (which
ignores recoil) is intended to be used to predict the time-response of penetration, this
report uses the maximum penetration to define the penetration.

It is perhaps easiest, therefore, to navigate through the results by first presenting the
fitted parameters, then examining the functional behavior of the model with those
parameters, and finally, showing how the sundry experimental data compare with the
model.

3.1 Model Parameters and Qualitative Behavior

The parameter Dc was arbitrarily selected as 4.445 mm (0.175 in), corresponding to the
sphere diameter employed in a number of tests by Minisi (4) into 20% ballistic gelatin.
The other model parameters were fitted to equation 17 using the data of Sturdivan (3)
and Minisi (4). In the case of Minisi, x(t) data were provided directly in tabular form,
while in the case of Sturdivan, the x(t) data were digitized from plots. In both cases,
central differencing was employed to estimate the instantaneous slope of the x(t) curve
(representing V(t)).

With this technique, and using the more extensive data set of Sturdivan spanning three
sphere diameters and striking velocities out to 2229 m/s, the remaining model
parameters were fitted. Their values are given in table 1. In the case of Minisi’s more
limited data set, all fitted parameters remained the same except Vc, which was best fit as
105 m/s. We will take the fits to the Sturdivan dataset as the baseline set of fitted
parameters to examine here. Note, however, that in both cases, the fitted value of α is
1/2, which fortuitously allows for the employment of equation 20 if the time response of

Table 1. Model parameter fits.

Parameter Sturdivan Data Minisi Data
(baseline)

α 0.5 0.5

b 0.34 0.34

Dc(mm) 4.445 4.445

Vc(m/s) 85 105
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the deceleration is desired.

First, we examine how this model predicts normalized penetration vs. striking velocity
for spheres of different diameters. Figure 2 shows how the sphere diameter affects the
normalized penetration profiles. All these curves would collapse into a single curve if
the strain rate dependence were absent (i.e., if α = 0). As it is, however, the strain-rate
dependence significantly lowers the normalized penetration as the sphere diameter is
decreased. The figure includes curves for a number of sphere diameters, including the
three (ranging from 2.38 mm to 6.35 mm) tested by Sturdivan (3) that were also used to
fit the model parameters (to be later examined in greater detail).

Normalized Steel Sphere Penetration into Gelatin
(predicted as a function of velocity

with sphere diameter as a parameter)

V0 (m/s)

0 500 1000 1500 2000

P/
D

0

10

20

30

40

50

60

70

80

90

100
D (mm)

25.4

10
6.35

1
0.5

0.1

2.38

4.76

Figure 2. Normalized penetration of steel sphere
into 20% ballistic gelatin, predicted as a
function of striking velocity, with sphere
diameter as a parameter.

Figure 3 considers the situation for one diameter of sphere (10 mm) and examines the
penetration that is achieved as the sphere is decelerated to a particular fraction of the
striking velocity (Vr/V0). Here, the term Vr refers to the residual velocity possessed by
the penetrator upon penetrating a certain depth of gelatin. Because the penetrator is
rigid, however, Vr also represents the instantaneous penetration velocity. While the
numerical values of residual and penetration velocity will be equal, the distinction is
whether attention is being called to the behavior of the penetrator or the target,
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Normalized 10mm Steel Sphere Penetration into Gelatin
(predicted as a function of velocity with
residual velocity fraction as a parameter)

V0 (m/s)

0 500 1000 1500 2000
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0
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Vr /V0

0
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0.3
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0.5

         

0.7
0.8
0.9

0.6

Figure 3. Normalized penetration for steel sphere
(D = 10 mm) into 20% ballistic gelatin,
predicted as a function of striking
velocity, with relative residual velocity,
Vr/V0, as a parameter.

respectively. The larger spacing between the low-residual-velocity curves (at high
striking velocity) indicates that the greatest penetration efficiency occurs at these lower
penetration velocities. Such a result is not wholly unexpected since the strain-rate
dependence of the model is one that yields a stronger target at higher strain rates (i.e., at
higher instantaneous penetration velocities).

The horizontal flatness of the curves at higher striking velocity indicates that for a fixed
percent residual-velocity degradation, a fixed penetration is obtained, regardless of the
actual striking velocity. This result represents the solution to any inertially driven
problem (i.e., where strength is a small fraction of the inertial force) and is not a function
of the strain-rate dependence of the target material.

Rather than portraying the information in terms of relative residual velocity, as in
figure 3, the same information can be displayed in terms of the abolute residual velocity.
This is done in figure 4, which reveals a few additional subtleties compared to figure 3.
While the same basic trend of higher penetration efficiency at lower penetration
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Normalized 10mm Steel Sphere Penetration into Gelatin
(predicted as a function of velocity

with residual velocity as a parameter)
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1500
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100
50

Figure 4. Normalized penetration for steel sphere
(D = 10 mm) into 20% ballistic gelatin,
predicted as a function of striking
velocity, with residual velocity, Vr, as a
parameter.

velocities is quite apparent (e.g., for Vr below 250 m/s), figure 4 shows that this trend has
its limits at low striking velocities. For Vr below 25 m/s, the efficiency drops
precipitously. This reversal is due to the fact that at very low penetration velocities, the
inertial term is becoming dwarfed by the strength magnitude, even as the strength term
is itself decreasing. For the data fit being considered, optimal penetration efficiency
appears to occur in the range of 50–150 m/s, though it remains relatively high to
penetration velocities approaching 500 m/s.

Another interesting representation of the model can be considered by comparing the
drag coefficient as a function of the Reynolds number for the current gelatin model
vs. the data that exists for spheres traversing purely Newtonian fluids. This comparison
is displayed in figure 5, specifically for spheres of 2.38 mm and 6.35 mm diameter
vis-à-vis Newtonian flow. To estimate the Reynolds number in gelatin, a value for
viscosity had to be established. And while viscous drag is not part of the current gelatin
model, a value was selected based on estimates of Sturdivan (3). Taking Sturdivan’s
boundary-layer thickness as the radius of the sphere, the value of µ/D takes on a
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Gelatin Drag Coefficient, as modelled

R = ρ VD/μ

1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6

C
D

0.1

1

10

100 α=0.5, b=0.34, 
Vc=85 m/s, Dc=4.445mm

D=2.38mm
in gelatin

D=6.35mm
in gelatin

Spheres in
Newtonian Fluid
(ref. Schlichting)

CD = b + (Dc /D)α(Vc /V)2−α

Note: The curve for spheres in Newtonian fluid was adapted
from (5) in figure 1.

Figure 5. Drag coefficient vs. Reynolds number for
2.38 mm and 6.35 mm spheres penetrating
gelatin vis-à-vis a Newtonian fluid .

constant value of 15,000 Pa·s/m. To repeat, this value was used merely to establish a
Reynolds number in gelatin for comparative purposes and is not an integral part of the
current strength-based gelatin model. The effect on the figure of selecting a different
value for µ/D would be to shift the model curves horizontally (to the left if µ/D were
increased and to the right if it decreased). Such a variation will not invalidate the
inferences to be drawn about the qualitative behavior of the drag coefficient in gelatin.

The comparison shown in figure 5 reveals several salient points. First, with decreasing
Reynolds numbers, the gelatin drag rises more steeply than the Newtonian data. This
feature occurs because shear strength is a component of the gelatin drag, whereas it is
not in Newtonian fluids. As the penetration velocity (i.e., the Reynolds number) is
decreased, the influence of the strength term becomes more prominent.

The other important point to draw is that in the flat (i.e., steady-state) range of laminar
flow, drag in gelatin is somewhat less than that in Newtonian fluids (a drag coefficient of
0.34 as compared with approximately 0.40). This behavior of gelatin is believed to arise
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from the gelatin’s tensile strength. In particular, the strength of gelatin serves to retard
the tension-induced flow separation by providing an ability to withstand some level of
tension as the flow approaches the waist of the sphere. The retarded separation
produces what can only be described as a more streamlined flow vis-à-vis a Newtonian
fluid, having the net effect of lowering the form drag upon the sphere.

The sharp adjustment of Newtonian drag for R > 105 depicts the effect of a transition
from laminar to turbulent flow. To this point, no evidence of such a transition in gelatin
has been observed, though it is not exactly clear what form turbulance might take in a
viscoelastic solid.

3.2 Comparison to Experimental Data

Having laid out the form and functional behavior of this strain-rate dependent gelatin
model, one may turn to a comparison with ballistic data of sphere penetration into 20%
gelatin. Surdivan (3) presented data in the form of penetration vs. time. Data collection
often ceased while there was still forward motion of the sphere. To represent his data for
this report, Sturdivan’s graphs were digitized in order to estimate late-time penetrations
and associated residual velocities. More recently, Minisi (4) has collected low-velocity
impact data for steel spheres into gelatin. Minisi’s data has the virtue of being collected
out to the point where forward velocity of the sphere ceased.

Because the predicted response is dependent upon the projectile diameter, it will prove
easist to present comparisons for each respective sphere size for which data is available.
In all cases, however, it is the same model parameters described in the prior section of
this report which are used for the model predictions of the data, for all projectile
diameters. Namely, these parameters take on the values depicted in table 1.

First, we consider 2.38 mm-diameter steel-sphere data collected by Sturdivan,
corresponding to a mass of 0.85 gr. The results are shown in figure 6. Predictions for the
low-velocity impacts are quite insensitive to small amounts of residual velocity because
the sphere deceleration is quite pronounced at these low velocities. The high velocity
data above 2000 m/s are likewise matched very well by the model.

Next, we consider Sturdivan’s data for 7 gr. steel spheres with 4.76 mm diameters. The
comparison to the model is shown in figure 7. Both experimental data are matched
closely by the model.
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P/D for 0.85 gr (D = 2.38mm) Steel Spheres
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Figure 6. Normalized penetration vs. striking
velocity for 2.38 mm (0.85 gr.) steel
spheres penetrating gelatin.
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Figure 7. Normalized penetration vs. striking
velocity for 4.76 mm (7 gr.) steel
spheres penetrating gelatin.
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The data for 16 gr. steel spheres from Sturdivan are examined in figure 8. The match of
the model to data is generally excellent, with the lone exception being the highest
velocity datum whose penetration is several diameters beyond the predicted amount;
nonetheless, this amounts to an error of less than 7%.

Finally, we consider the data of Minisi, collected for 4.445 mm steel spheres impacting at
speeds below 300 m/s. The data and two corresponding fits are displayed in figure 9.
When using the fitting parameters employed for the Sturdivan data set, the prediction
was on the high side of the data. In order to match this limited data set better, one of the
fitted parameters, Vc, was set to a larger value of 105 m/s.

As to why there is this slight systematic disparity, one possibility is offered here for
consideration. Hydrated ballistic gelatin is a material unlike most targets of ballistic
interest in that several key phases of the preparation are performed, not in a
manufacuting plant but by the end user. These key phases include hydrating the gelatin
powder to the right concentration in water of the proper temperature, mixing the
solution to maximize homogeneity while minimizing void content, and refrigerating the
hydrated liquid gelatin to the proper temperature until the material sets. With all these
key phases in the hands of the end user, it is perhaps not surprising that if two
laboratories were to start with the same gelatin powder, they might produce batches of
20% ballistic gelatin with slight, yet systematic variations in mechanical properties.
Given that the Sturdivan and Minisi data sets were generated over 25 years apart in two
different facilities, the author finds such a disparity of minor concern. To help clarify the
nature of this data disparity, it would have been beneficial if the Minisi data could have
been extended out to higher velocities.

Figures 6–9 portray the maximum penetration achieved by a variety of different spheres
impacting over a large range of striking velocities. The corresponding curves, given by
equation 17, which accounts for the effect of local strain rate, appear to provide excellent
fits to the data. However, a better measure of the quality of the fit may be obtained by
examining the decelerations of individual tests and their corresponding predictions
according to equation 16. Figures 10–13 provide those curves for all the test data
examined in this report where, as before, each figure depicts the data for a different
sphere diameter. Despite some scatter in the data, the model captures very well the
transitions from high-velocity deceleration, to mid-velocity penetration efficiency, to
low-velocity arrest.
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Penetration of 6.35 mm spheres 
into gelatin
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Figure 8. Normalized penetration vs. striking
velocity for 6.35 mm (16 gr.) steel
spheres penetrating gelatin.
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0.85 gr. Steel Sphere, D = 2.38 mm
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Figure 10. Velocity vs. position for 2.38 mm steel
spheres of Sturdivan (3), with
comparison to model predictions.

7 gr. Steel Sphere, D = 4.76mm

z (cm)

0 5 10 15 20 25 30

V 
(m

/s
)

0

200

400

600

800

1000

287m/s
942m/s

Figure 11. Velocity vs. position for 4.76 mm steel
spheres of Sturdivan (3), with
comparison to model predictions.
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16 gr. Steel Sphere, D = 6.35 mm
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Figure 12. Velocity vs. position for 6.35 mm steel
spheres of Sturdivan (3), with
comparison to model predictions.
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Figure 13. Velocity vs. position for 4.445 mm
steel spheres of Minisi (4), with
comparison to model predictions.
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While Sturdivan did not publish V vs. x plots (only V vs. t), he did derive the equation
characterizing the Resal’s Law form that he utilized. The equation takes the form of

V = V0 − c(1 − e−dx) . (22)

Such a form does not change concavity. . . it is always concave upwards. The
concave-downward “knee,” which is invariably present at the lower right terminus of
the curves in figures 10–13, cannot be modeled with Resal’s Law, as Sturdivan himself
admits. As such, a fit of Sturdivan’s model to the high-velocity segment of the data will
invariably lead to a systematic overestimation of the final penetration when Resal’s Law
is utilized. Likewise, an attempt to match the final penetration with Resal’s Law will
produce a poor fit of velocity over much of the deceleration. Such deficiencies do not
apply to the currently proposed strain-rate dependent model.

Because of the fortuitous value of the fitted coefficient α = 1/2, position vs. time is also
implicitly available, by way of equations 20 and 16 (see figure 14 for an example).

Distance vs. time, V0=2229 m/s
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Figure 14. Position vs. time for 2.38 mm steel
sphere of Sturdivan (3), impacting at
2229 m/s, with comparison to
model predictions.
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4. Conclusions

In this report, a model was proposed to characterize the resistance of gelatin to
penetration by spherical penetrators. The proposed model differs from traditional
resistance formulations, where the resistance is assumed to be a constant material
property. It also differs from the gelatin model of Sturdivan (3), which treats the target
resistance in terms of Newtonian viscosity. In the present model, the resistance is
assumed to be a power of the strain rate, the actual exponent being a fitted parameter of
the model. In this manner, the current model bridges the gap between a pure
strength-based resistance formulation and a Newtonian-viscous formulation.

The net effect of a rate-dependent formulation for gelatin is that the target resistance
varies with both penetration velocity as well as projectile diameter. The behavior of such
a model was fitted to and compared against historical data of Sturdivan (3) as well as
more recent data of Minisi (4). Over velocities which reached as high as 2229 m/s and
over a range of sphere diameters from 2.38 mm to 6.35 mm, the model was shown to
match the data in an excellent manner.

Unlike the Resal’s Law formulation employed by Sturdivan, where the projectile
velocity is always concave upward as a function of instantaneous penetration, the
current model can and does capture the change in concavity in velocity vs. penetration,
as the sphere is rapidly decelerated and brought to a halt in the latter stages of the event.

The general form of the current model is able to provide a closed-form solution for
velocity vs. instantaneous penetration (i.e., position). However, in the current case,
because the fitted strain-rate exponent is exactly 1/2, there also exists a closed-form
solution for time vs. velocity. In this manner, position vs. time results are available as an
implicit function of velocity.

While comparison to data over a wider range of sphere diameters would be highly
desirable to further validate the rate-dependence feature of the proposed model, the
existing data nonetheless spans a respectable range of striking velocities and projectile
diameters. Another problem worthy of future investigation would be to adapt the model
for use with nonspherical projectiles. While such an adaptation should hopefully be
straightforward for rigid, compact (L/D ≈ 1) fragments, the modeling of eroding,
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slender (L/D > 1), or flat (L/D < 1) projectiles would require additional considerations,
especially if the penetration into gelatin were not aerodynamically stable.
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